npr-1 Regulates Foraging and Dispersal Strategies in Caenorhabditis elegans
نویسندگان
چکیده
Wild isolates of Caenorhabditis elegans differ in their tendency to aggregate on food [1, 2]. Most quantitative variation in this behavior is explained by a polymorphism at a single amino acid in the G protein-coupled receptor NPR-1: gregarious strains carry the 215F allele, and solitary strains carry the 215V allele [2]. Although npr-1 regulates a behavioral syndrome with potential adaptive implications, the evolutionary causes and consequences of this natural polymorphism remain unclear. Here we show that npr-1 regulates two behaviors that can promote coexistence of the two alleles. First, gregarious and solitary worms differ in their responses to food such that they can partition a single, continuous patch of food. Second, gregarious worms disperse more readily from patch to patch than do solitary worms, which can cause partitioning of a fragmented resource. The dispersal propensity of both gregarious and solitary worms increases with density. npr-1-dependent dispersal is independent of aggregation and could be part of a food-searching strategy. The gregarious allele is favored in a fragmented relative to a continuous food environment in competition experiments. We conclude that the npr-1 polymorphism could be maintained by a trade-off between dispersal and competitive ability.
منابع مشابه
A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans.
Homeostasis of internal carbon dioxide (CO2) and oxygen (O2) levels is fundamental to all animals. Here we examine the CO2 response of the nematode Caenorhabditis elegans. This species inhabits rotting material, which typically has a broad CO2 concentration range. We show that well fed C. elegans avoid CO2 levels above 0.5%. Animals can respond to both absolute CO2 concentrations and changes in...
متن کاملNeuronal and molecular substrates for optimal foraging in Caenorhabditis elegans.
Variation in food quality and abundance requires animals to decide whether to stay on a poor food patch or leave in search of better food. An important question in behavioral ecology asks when is it optimal for an animal to leave a food patch it is depleting. Although optimal foraging is central to evolutionary success, the neural and molecular mechanisms underlying it are poorly understood. He...
متن کاملThe FGLamide-Allatostatins Influence Foraging Behavior in Drosophila melanogaster
Allatostatins (ASTs) are multifunctional neuropeptides that generally act in an inhibitory fashion. ASTs were identified as inhibitors of juvenile hormone biosynthesis. Juvenile hormone regulates insect metamorphosis, reproduction, food intake, growth, and development. Drosophila melanogaster RNAi lines of PheGlyLeu-amide-ASTs (FGLa/ASTs) and their cognate receptor, Dar-1, were used to characte...
متن کاملNeuropeptide receptors NPR-1 and NPR-2 regulate Caenorhabditis elegans avoidance response to the plant stress hormone methyl salicylate.
Methyl salicylate (MeSa) is a stress hormone released by plants under attack by pathogens or herbivores . MeSa has been shown to attract predatory insects of herbivores and repel pests. The molecules and neurons underlying animal response to MeSa are not known. Here we found that the nematode Caenorhabditis elegans exhibits a strong avoidance response to MeSa, which requires the activities of t...
متن کاملA Variant in the Neuropeptide Receptor npr-1 is a Major Determinant of Caenorhabditis elegans Growth and Physiology
The mechanistic basis for how genetic variants cause differences in phenotypic traits is often elusive. We identified a quantitative trait locus in Caenorhabditis elegans that affects three seemingly unrelated phenotypic traits: lifetime fecundity, adult body size, and susceptibility to the human pathogen Staphyloccus aureus. We found a QTL for all three traits arises from variation in the neur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 18 شماره
صفحات -
تاریخ انتشار 2008